The Complex Mechanism of Glutamate Dehydrogenase in Insulin Secretion

نویسندگان

  • Leonard A. Fahien
  • Michael J. MacDonald
چکیده

Leucine is the only physiologic amino acid that can stimulate insulin release by itself, and a great deal of evidence suggests that leucine does this by allosterically activating glutamate dehydrogenase (GDH). GDH catalyzes the oxidative deamination of endogenous glutamate, which is present at a high concentration in the pancreatic b-cell. Studies that support this role of leucine include the fact that leucine and 2-aminobicyclo[2.2.1] heptane-2-carboxylic acid (BCH), a nonmetabolizable leucine analog, are activators of GDH and promote insulin release from pancreatic islets (1–4). Although the addition to pancreatic islets of glutamine alone—which by its conversion to glutamate enormously increases the intracellular concentration of glutamate—does not stimulate insulin release, adding glutamine in the presence of leucine or BCH causes a robust stimulation of insulin release. Patients with mutations in the region of the GDH gene that encodes the part of the GDH protein where the allosteric inhibitor guanosine triphosphate (GTP) binds to the enzyme suffer from hyperinsulinism and hypoglycemia (5), and this indicates that GDH is involved in insulin secretion in humans. In addition, recent studies showed that short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficiency causes hyperinsulinism secondary to a loss of inhibition of GDH by SCHAD (6). Antischizophrenic drugs can produce hyperglycemia in patients (7,8) perhaps due to their ability to inhibit GDH. Both insulin release and GDH activity are decreased by SIRT4 (9), a mitochondrial ADP-ribosyl transferase, and deletion of GDH in b-cells partially abolishes the insulin secretory response (10).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Glutamate Dehydrogenase Activity and Insulin Secretion in Mice Exposed to Dexamethasone

Background and Aims: Diabetes is one of the most important endocrine disrupters and is associated with various hormones, including those that can lead to diabetes. Glucocorticoid use may lead to insulin resistance. Dexamethasone is one of these glucocorticoid compounds. Glutamate dehydrogenase plays a key role in the production of glutamate in the secretion of insulin. Based on these hormonal i...

متن کامل

Effects of Parathion Toxin on Glutamate Dehydrogenase Enzyme Activity and Diabetes Induction

Introduction: The main propose of this study was to determine the effect of parathion on activity of glutamate dehydrogenase (GDH) as a key enzyme in second phase secretion of insulin and to determine serum glucose levels in rats. Methods: To conduct the study, 35 rats were randomly divided into five groups (n=7). The serum glucose level of each group was measured and the total average was ca...

متن کامل

Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase.

Glutamate dehydrogenase (GDH) is important in normal glucose homeostasis. Mutations of GDH result in hyperinsulinism/hyperammonemia syndrome. Using PCR/single-strand conformation polymorphism analysis of the gene encoding GDH in 12 Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), we found a mutation (Y266C) in one PHHI patient. This mutation was not found in an...

متن کامل

Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase.

Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of gre...

متن کامل

Glutamate is not a messenger in insulin secretion.

Experiments do not support a recent claim that glutamate formed from the amination of citric acid cycle-derived alpha-ketoglutarate is a messenger in glucose-induced insulin secretion (Maechler, P., and Wollheim, C. (1999) Nature 402, 685-689). Glucose, leucine, succinic acid methyl ester, and alpha-ketoisocaproic acid all markedly stimulate insulin release but do not increase glutamate levels ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2011